

FACULTY OF EARTH AND ENVIRONMENTAL SCIENCES AND ENGINEERING

ARTIFICIAL LIFTING II. *MSc in Petroleum Engineering* **MFKOT730031**

COURSE DESCRIPTION

FACULTY OF EARTH AND ENVIRONMENTAL SCIENCES AND ENGINEERING MINING AND ENERGY INSTITUTE

2024. Spring Term

Course Data Sheet

Course Title: Artificial Lifting II.	Code: MFKOT730031
Instructor: Dr. Gábor TAKÁCS	Responsible department/institute:
professor emeritus	DPE/IPNG (OMTSZ/KFGI)
	Course Element: Compulsory
Position in curriculum*	Pre-requisites (if any): Artificial lifting
(which semester): 4	I. (MFKOT720017)
(3)	
No. of contact hours per week (lecture	Type of Assessment (examination /
+ seminar): 3 +0	practical mark / other): examination
Credits: 3	Course: full time

Course Description:

- 1. Introduction to ESP operations: history, main features.
- 2. Hydraulic, electrical backgrounds.
- 3. Components and their operation: centrifugal pump, performance curves.
- 4. Construction of the electric motor, operational features, starting. Temperature conditions of ESP motors. Functions and main parts of protectors.
- 5. Construction and operation of gas separators.
- 6. The downhole cable: construction, materials, operational features. Ancillary downhole equipment.
- 7. Application of ESP units in special conditions.
- 8. Producing high viscosity fluids. Production of gassy fluids: pump performance deterioration. Possible solutions: use of natural gas separation, gas separators, others.
- 9. Abrasive, high-temperature fluid pumping.
- 10. Variable speed drives: construction and operation of VSD drives. Design of ESP installations for low and high gas contents.
- 11. Analysis of ESP system operation: NODAL Analysis. Energy conditions of ESP operation.
- 12. Monitoring of system operation, typical failures, their elimination.
- 13. Main features of PCP systems. System components: PCP pump, rod string, surface drives.
- 14. Basics of PCP installation design.
- Competencies to evolve:
- Knowledge:

Knows the economic processes related to the hydrocarbon industry.

Knows the processes and phenomena occurring during production in petroleum and natural gas water wells.

Knows the equipment used for different types of production; and the methods ensuring the appropriate selection of the necessary equipment and procedures.

Knows the methods and tools of computerized design and analysis in the hydrocarbon industry. Ability:

Able to interpret the economic processes related to the hydrocarbon industry and to give adequate answers to them.

Capable of monitoring and forecasting the processes taking place in oil and natural gas water wells. Able to choose the optimal production method, design and select the production equipment.

Able to supervise and inspect equipment related to pipeline transportation of crude oil, natural gas and water.

Able to select equipment for field and transmission line transport and supervise the operation of the equipment and manage the participating groups.

Capable of hydrocarbon industrial computer design and analysis.

Attitude:

Autonomy and responsibility:

Able to independently manage hydrocarbon industrial complex planning works and perform project management tasks, or participate in them.

Autonomously able to plan the production of fluid-producing wells, to achieve optimal production conditions; for the appropriate selection of the necessary equipment and procedures; to implement solutions that ensure maximum profit.

Able to autonomously plan the use of energy carriers produced from renewable natural resources and residual materials in the energy supply system, and manage the operation of the established system.

Takes responsibility for his/her professional decisions and the work processes carried out by him/her or under his/her control.

Assessment and grading:	Grading scale:
Students will be assessed with using the	% value Grade
following elements.	5
Attendance: 5 %	90 -100% (excellent)

Short quizzes	10 %	80 - 89%	4 (good)
Midterm exam	40 %		3
Final exam	45 %	70 - 79%	(satisfactory
Total	100%)
		60 - 69%	2 (pass)
		0 - 59%	1 (failed)

Compulsory or recommended literature resources:

 Cholet, H.: Progressing cavity pumps. Editions Technip, Paris. 1997. 112p. ISBN 2-7108-0724-6.

- G Takacs.: Sucker-rod pumping manual. Tulsa : PennWell, 2003. 395 p. ISBN 0 87814 899 2
- Production Operations Engineering, Petroleum Engineering Handbook Vol 4, SPE, 2006
- George V. Chilingarian et.al.: Surface Operations in Petroleum Production II, Elsevier, 1989.
- Szilas, A.P.: Production and Transport of Oil and Gas. Part B., Akadémiai Kiadó, Budapest, 1986., ISBN 963-05-3363-4
 Takács G.: Production technology 2. Univ. of Miskolc, 1991. 216p.

Course Schedule for 2023/24 school year, spring term

Date	Торіс
2024.02.13	Introduction to ESP operations: history, main features. Hydraulic,
	electrical backgrounds. Components and their operation: centrifugal
	pump, performance curves.
2024.02.20	Construction of the electric motor, operational features, starting.
	Temperature conditions of ESP motors. Functions and main parts of
	protectors. Construction and operation of gas separators.
2024.02.27	The downhole cable: construction, materials, operational features.
	Ancillary downhole equipment. Application of ESP units in special
	conditions.
2024.03.05	Producing high viscosity fluids. Production of gassy fluids: pump
	performance deterioration. Possible solutions: use of natural gas
	separation, gas separators, others.
2024.03.12	Abrasive, high-temperature fluid pumping.
2024.03.19	Variable speed drives: construction and operation of VSD drives.
	Design of ESP installations for low and high gas contents.
2024.03.26	Analysis of ESP system operation: NODAL Analysis. Energy
	conditions of ESP operation. Monitoring of system operation, typical
	failures, their elimination.
2024.04.09	Main features of PCP systems. System components: PCP pump, rod
	string, surface drives. Basics of PCP installation design.
2024.04.23	Test writing.

Test Example

OPEN BOOK

_____, 2024

Student Name:.....

Student ID.:....

Problem No.	Marks	Score
1	32	
Total	32	

"I pledge that I have neither given nor received any unauthorized assistance on this exam."

Student's Signature: _____

Problem Statement:

Select the main components of an ESP installation running at 60 Hz in a well with negligible gas production.

Pump Setting D. $= 4,500$	WHP = 100 psi	Sp.Gr. Oil =0.85
Perforations @ 5,000 ft	CHP = 10 psi	Sp.Gr. Water = 1.0
Tubing Size 2 3/8" new	Liquid Rate = 1,700 STB/d	Sp.Gr. Gas = 0.60
Casing Size 6 5/8"	Static Liquid Level = 1,820 ft	PI = 2 bpd/psi
Bottomhole Temp =	Water Cut = 80%	Frequency = 60 Hz

Instructions:

Follow the steps outlined on the following sheets.

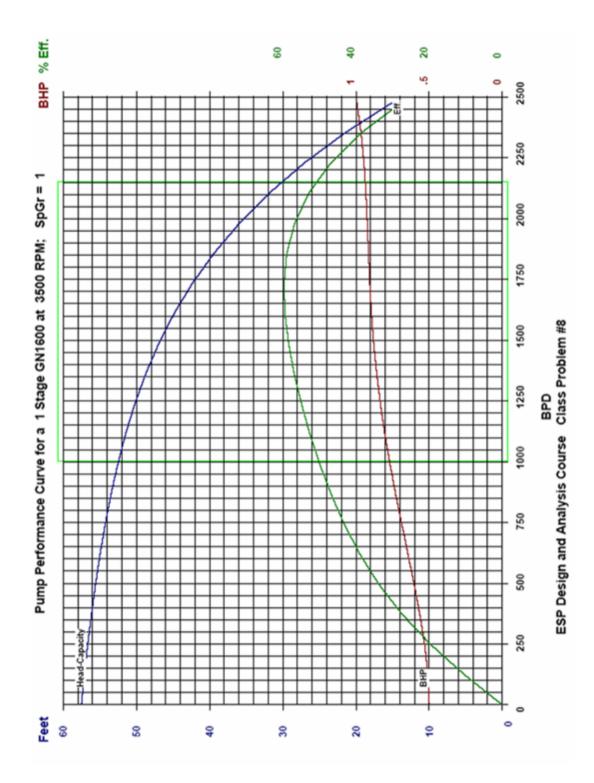
Solution.

Inflow Calculations Calculate liquid Sp.Gr. from water cut. $SpGr_1 =$ Calculate SBHP = $0.433 (L_{perf} - L_{stat}) SpGr_1 =$ psi Calculate FBHP = SBHP - Q/PI =psi Calculate pump intake pressure (Eq. 5.2) PIP =FBHP - 0.433 ($L_{perf} - L_{pump}$) SpGr_l = psi Find dynamic liquid level from **Eq. 5.6** (use $grad_g = 0$): ft $L_{dyn} =$ Find solution GOR from Eq. 5.3: Oil API = 141.5/SpGr Oil - 131.5 =**y** = $\mathbf{R}_{s} =$ scf/STB Calculate oil volume factor @ PIP from Eq. 5.5 $\mathbf{F} =$ $B_0 =$ Calculate liquid rate at pump intake from Eq. 5.4: bpd O =Calculate TDH Find Frictional head loss from **Fig. A-1**: Δh_{fr} (ft/1,000 ft) = $\Delta H_{fr} = \Delta h_{fr} x$ Setting Depth/1,000 = ft $h_0 = 2.31$ WHP / SpGr = ft

$$TDH = L_{dyn} + \Delta H_{fr} + h_0 = \qquad \qquad ft$$

Select Pump Type using Table C-1

Series = Pump Type = Performance Parameters @ desired rate from attached Performance Curve:


Head/Stage	ft/stage
BHP/Stage	HP/stage
Shut-In Head/Stage	ft/stage
Allowed Shaft Power	HP
Shaft Diameter	in

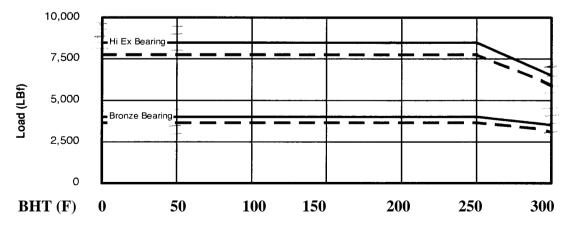
Housing Burst Pressure psi
Calculate Number of Stages Required No. of Stages = TDH / (ft/stage) = stages Pump Housing # with Stages (from the table attached).
<u>Check Pump for Mechanical Strength</u> Pump BHP= No. of Stages x BHP/stage x SpGr ₁ = HP Shaft Checks OK not OK. Max, internal housing pressure = Shut-In Head/Stage x Stages x 0.433 x SpGr ₁ = = psi Hausing Checks OK not OK
Housing Checks OK not OK.
Select MotorMotor Series considered: SeriesCheck flow velocity around motor: $v_l = ft/s$ OKNotor HP = Pump BHP =BHPSelect Motor from Table D-1:
Power =HPVoltage=VCurrent=AMotor Loading = $\%$
Actual Motor Current =AMotor Efficiency = $\%$ Motor Power Factor =.
Select CableCable Current = Actual Motor Amps =ACable Length = Pump Depth + 100 ft =ftCable Type Selected =
Select Cable Size using program CABLES. When running the program, use the following parameters: Cable life = 60 months (5 years) Power cost = 5 c/kWh Interest rate = 12%
Selected Cable Size from program CABLES = AWG #
Calculate Voltage Drop in Cable, V/1,000 ft Drop Read from Graph = V/1,000 ft from App. E Adjusted Drop: $V_{adj} = V_{graph} (1 + 0.00214 (BHT -77)) =$ = V/1,000 ft

=

Calculate Surface Voltage, Power

Surface Voltage= Motor Voltage + Drop in Cable =VoltsSurface kVA = 1.732 x Surface Voltage x Cable Current / 1,000 =kVAPredicted Power Requirement = kVA x Power Factor =kW.

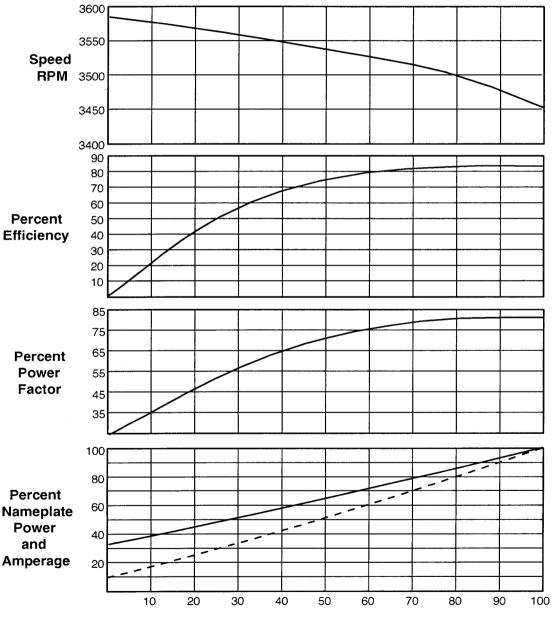
Available housings for GN1600 pumps.


Housing #	Max. Stages
10	12
20	28
30	43
40	59
50	75
60	90
70	106
80	122
90	137

ESP Cable Dimensional and Pricing Data

AWG Size	OD, in	Weight, lbs/ft	Price, \$/ft
1	1.357	1.69	11.30
2	1.280	1.44	9.69
4	1.091	1.00	6.46
6	1.000	0.75	5.11

ESP Protector Load Rating Data



ESP Protector Shaft Rating Data

Series	Shaft Diameter, in	Rated HP
375	0.875	256
400	0.875	256
540	1.187	637
562	1.187	637

ESP Motor Performance Curves

Percent of Nameplate Load

Examination review questions Final Exam CLOSED BOOK

January 28, 2013

Student Name:....

Student ID.:....

Problem No.	Marks	Score
1		
2		
Total		

"I pledge that I have neither given nor received any unauthorized assistance on this exam."

Student's Signature: _____

Problem No. 1

List the components of a conventional ESP installation from the well 1. 2. 3.		L
4 5 6		
7 8		
List the three most important advantages of ESPs:		
1		
2		
List the three most important disadvantages of using ESPs: 1		
2		
3		
The total head to be developed by an ESP pump has the following the foll		onents:
The ESP pump's stage consists of the following two parts: The stationary part is called the The rotating part is called the		
If pumping viscous fluids, the following changes will happen in the of Pump capacity Head developed Required power Pump efficiency	peration	
When using ESP equipment in a gassy well, the main solutions to effects of free gas are:	overcom	e the detrir
а.		
b		
b		
b c	YES	NO
b	YES	NO

9. Solids in the produced fluid damage the ESP pump by two basic mechanisms:

Mixed flow pumps handle greater gas volumes than radial pumps

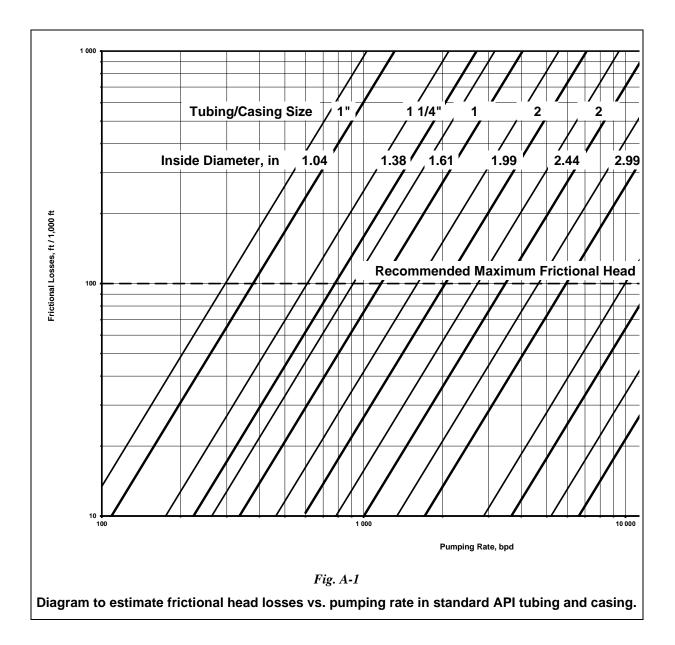
a.

- b. _____
- 10. If sand or solids production is a problem then floating impeller pumps are not recommended: FALSE or TRUE
- 11. Describe the Affinity Laws used for defining the operation of the ESP pump at different speeds.
 - a. The pumping rate changes with the _____.
 - b. The head developed changes with the ______.
 - c. The required power changes with the ______.
- 12. Compare a "soft start" with a VSD unit to a normal start of the ESP equipment. Give details on the variation of speed and motor current with time.

Problem No. 2

The basic data for an ESP installation are as follows:

Pump Setting Depth = 5,000 ft	Depth of Perforations $= 6,000$ ft
Desired Pumping rate $= 4,500$ bpd	Liquid Sp.Gr. = 0.95
Tubing Size = $3 \frac{1}{2}$ " (old pipe)	Wellhead Pressure = 200 psi


Calculate the TDH for three different cases:

Case A:	The dynamic liquid level is at 4,500 ft
Case B:	The static liquid level is at 1,000 ft
	The well's PI is 3 bpd/psi
Case C:	SBHP = 2,200 psi
	PI = 2.8 bpd/psi

Instructions:

First calculate the dynamic liquid level then find frictional losses. List your calculation results in the table provided.

Case	Ldyn	TDH
А		
В		
С		

